
October 2022

The Legacy Trap
How to modernize applications that are
holding you back, and why you need to
start right now
By Michael Coté and Marc Zottner

2

The Legacy Trap

Table of Contents
Introduction: Caught in the legacy trap .3

Story time: Creating new opportunities in insurance . 5

What is modernization? . 6

What modernization means . 8

Types of modernization . 8

Focus on business outcomes . 11

Outcome-led app portfolio rationalization . 13

Find the applications . 18

Bucketize and organize information . 19

Jump-start monolithic modernization . 30

Common missteps with traditional approaches .37

Building a modernization habit .42

About the Authors .43

3

The Legacy Trap

Introduction: Caught in the legacy trap
“Oh, that’s the mobile team . They can do anything they want .” This is what I heard
from an enterprise architect at a large enterprise five years ago . We were discussing
their company’s complicated IT systems to handle all aspects of their business, from
selling to customers, handling the logistics of their service, tracking the revenue, and
so on . In their office, a whole wall was taken up with a diagram that looked like a
cross-section of a city’s underground piping and subways, complete with bubble
gum and string on water pipes keeping leaks at bay .

I’d said that I used this company’s app weekly and that the app always had new
features and made my experience better . I liked the company because of that app,
and it made my life better . My colleagues and I were there to sell our software
development platform (now called VMware Tanzu® Application Service™) .

The architect was friendly enough, but they turned sour once we sat down at their
desk . As with so many meetings I had back then, the challenge was something like
“all your agile, cloud native stuff sounds great, but I bet you can’t solve this mess
we’re currently in .” If I could read their mind, I think they’d be thinking, “Also, thanks
for getting my boss’s boss all excited . Now I have to deal with you .”

They were right in their sentiment . Our technology was fine, and was indeed used
by many mobile teams . That mess of piping was the most critical problem . All that
bubble gum and string was holding it together . These companies could eke out a few
more years of evolving their business by setting up those special mobile teams,
doing greenfield software . But I’m now seeing those pipes burst as the bubble gum
and string crack and fray .

Most organizations have hit the legacy wall . They’re now unable to change how their
core business works because their IT systems are too old and unchangeable . “Most
of our software development is supporting legacy capabilities that are in-house and
don’t provide a competitive advantage,” as one executive put it, “which is opposite
of what I would want to have1 .”

Organizations are now caught in a legacy trap . There’s no more room on the margins
to avoid modernizing their core systems . When you’re caught in the legacy trap, you
can’t add new features to your software fast enough, which means you can’t change
how your business operates . You can’t innovate at sustainable speed .

1 . Forrester Consulting, commissioned by VMware . “To Recover From The Pandemic, Automate Operations To Free
Budget For Innovation .” September 2020 .

https://tanzu.vmware.com/content/content-library/to-recover-from-the-pandemic-automate-operations-to-free-budget-for-innovation
https://tanzu.vmware.com/content/content-library/to-recover-from-the-pandemic-automate-operations-to-free-budget-for-innovation
https://tanzu.vmware.com/content/content-library/to-recover-from-the-pandemic-automate-operations-to-free-budget-for-innovation

4

The Legacy Trap

Escaping this legacy trap is one of the most important business problems right
now . It’s no longer an IT problem but something that requires the attention of
the business .

Colin Bryar and Bill Carr tell the story of Amazon escaping the legacy trap in
Working Backwards . Amazon is widely admired for it’s software approach and its
business results show why . However, sometime in the 2000s as the authors cover,
Amazon was trapped in the legacy trap: there were too many dependencies that
were slowing down the team’s ability to get software out the door and quickly
evolve the business . As the authors explain, Amazon explored many process options
(resulting in several of its well known practices), added new enterprise architecture
requirements for API creation and usage across the stack . This wasn’t an overnight
project and took “several years of intensive and
delicate work2 .”

That work at Amazon also demonstrates that the legacy trap isn’t just about
modernizing the hardware and software stack, it’s also about modernizing the
“meatware” stack: how people work together and how your organization is
structured . You’re not only breaking apart the core system monolith, you’re
transforming the organizational monolith and the way it generates software .

In my (Coté’s) last three books, I discussed what this new stack looks like and many
tactics for going through digital transformation . Like the organizations now caught in
the legacy trap, I’ve skipped over a discussion of modernizing old systems .

Since the legacy trap is, my co-author Marc Zottner and I believe, the most pressing
issue for enterprises now, this book covers how companies pry the trap open so they
can get back to business innovation . As you’ll see, there’s an underlying technical
collection of patterns, but the critical first step is starting with a focussed strategic
analysis of the current state of your organization and its IT systems . After that
analysis, the IT and business leaders then need to prioritize and actively manage the
modernization program . This process is fast, holistic, and a true game changer in
how you approach software .

We’ve worked with numerous organizations on this topic, and this book draws from
that work . We’ll cover the common stories, practices, and mindsets organizations
use to escape the legacy trap .

At the end, all of your problems won’t be solved, of course . But you should have a
good idea of where to start, how to put together your strategy, how to manage your
modernization programming, and how people work day to day efficiently to
modernize your software .

I’m hesitant to spend much time on the urgency of this problem . When your house
is on fire, you know it . Sometimes though, you get used to the flames or don’t see
them . However, because a large part of escaping the legacy trap is realizing that
you’re suffering a business problem rather than just a technology problem, let’s look
at an example .

2 . Bryar, Colin; Carr, Bill . Working Backwards (p . 69) . St . Martin’s Publishing Group . Kindle Edition .

5

The Legacy Trap

Story time: Creating new opportunities in insurance
The problem with being a mature, global company is that you’re often so successful
that there are few new customers or problems to solve for your customers: you’ve
already saturated the market . We see this at insurance and telco companies a lot .
Although there may be numerous houses and cars to insure, most of them are
already insured . In such mature businesses, the way to grow share price is finding
new revenue and driving down costs—the basics .

Let’s look at a theoretical example of that business problem in insurance . Let’s say
the Mideastern Warm Smiles Insurance Company wants to grow revenue . They’ve
done a great job over the past 140 years insuring houses and cars, and grew revenue
in the early 2000s by acquiring a point-of-sale warranty business .

Business has slumped now, and the share price is boring . A management
consulting company compiled a large report that suggested three pillars for
improving shareholder value . One of them was to enter new types of insurance .
Playing off the synergies of that warranty business, the consultants suggested
entering short-term insurance: coverage that would last for 24 hours or less . For
example, a customer might go to the beach for the day and want to insure their new,
$1,300 iPhone against damage and theft . The likelihood that anything will happen
(especially if they have newer models that are water and sand resistant) is low, so
collecting the $50 for that one day of insurance is almost like free money to the
insurance company . Now, imagine if that happens thousands, hundreds of thousands
of times a day, globally .

After some business and actuary work, the CIO is given a new set of applications to
create . First, the application for the insurance; next, the actuary back end for
approving insurance; then, the account management for these policies . Seems
simple enough: it’s software . You can just add a feature .

A situation like this is where the legacy trap is often sprung . Developing the actual
web app for an application is often easy, but integrating with the existing back-end
services is often near impossible . In the case of Warm Smiles, the back-end systems
that maintain policies only support annual policy terms . That will need to be updated .
Payments must be done through bank ACH or physical checks . (Here, the CIO
thinks, “Well, it did always seem weird that customers had to fill out a PDF to pay
their policies .”) These payments can take up to 10 business days to clear . Warm
Smiles will need to modify their payment processing system . And what if someone
actually loses their iPhone and wants to file a claim? Usually, claims processing takes
five business days and requires an adjuster visit, but we’re just talking about an
iPhone here . Our CIO friend also keeps hearing the mobile team say something
about batch jobs and something called an enterprise service bus . Those need to be
updated as well . And so on, and so on . Meanwhile, Warm Smiles’ rival, Southeastern
Friendly Pats on the Back Assurance Group, has launched their own short-term
insurance business and has seen a 3 percent rise in share price .

6

The Legacy Trap

This is a made-up example, but this kind of situation repeats itself over and over in
large organizations . Warm Smiles is squarely in the legacy trap . Their software
portfolio does not support the business fitness and agility needed . At some point,
the portfolio was great—the company has saturated their market and survived for
140 years . But, slowly and then all of the sudden, their portfolio became legacy and
urgently needed to be modernized .

Sadly, most organizations have to suffer a Warm Smiles scenario before they
discover the legacy trap and then do something about it . This book is all about
getting unstuck from that first trap and then changing your thinking and process to
prevent stepping into another legacy trap .

What is modernization?
How software goes bad
To understand what modernization means with respect to software, you first need to
understand how software goes bad . Describing the way software deteriorates is
tricky . Unlike your body, software does not age . It doesn’t become brittle, break, get
forgetful, or develop poor habits like eating salted butter on a spoon . Software can
get “sick” if a virus infects it . However, a software virus is changing or faking out the
original software—left on its own, software will keep running . Unlike the hunk of meat
known as the human body, software does not deteriorate .

Instead, there are at least three3 ways software goes bad:

1. Fitness: The software is no longer able to scale reliably to keep up with user
demand . It runs too slow as measured in actual response time (time to click to new
screen) or in workflow processing time (24-hour batch jobs instead of seconds) .
This category might also include the inability to apply security fixes or upgrades .

2. Capability: The software cannot support new capabilities, such as programming
languages, API access, user interface types (like mobile) . It can’t run on new types
of infrastructure .

3. Forgotten: People have forgotten how it works . The software could be fully
capable and you could even make simple changes to update it, but there are few
people with skills to operate and change the software and/or knowledge of the
original designs . This means you may not know how to run or modify the software .

Reducing, or controlling, costs is another reason people often want to modernize
software . However, if you can easily change the software to a cheaper version, you
likely won’t think of the software as legacy . If the software has one of the above ways
of going bad and that slows you from changing the software to a cheaper alternative,
then you’ll be in a legacy trap .

3 . There are many other reasons, especially if you ask programmers . See “Defining Legacy Code” by Eli Lopian for
one list .

https://dzone.com/articles/defining-legacy-code

7

The Legacy Trap

Here are two shorter definitions:

1 . “Legacy technology is any technology that makes it difficult for organizations to
change their application systems to support changing business requirements . And,
therefore, it impedes business agility,” said Anne Thomas, distinguished research
VP at Gartner, in an email to CIO Dive4 .

2 . “Legacy code is code without unit tests,” according to Michael Feathers5 .

These two definitions describe the outcome and the cause of legacy software: The
business can’t change and there is no way to test that changes still work . The pithy
Feathers definition gets to the fear part of legacy software: Sure, we could change it,
but we have no way to know if it will work . His definition is also handy because it
allows you to predict which software is legacy (lack of tests) and it implicitly tells you
how to fix it (write tests) .

All of these definitions have something in common: Legacy software is software that
you have to change but are afraid to change . Otherwise, you would just call it your
software . For most organizations, this means your business can no longer be
changed, and you can’t keep pace with the customer demands and competition .

This is where the “trap” of the legacy trap comes in: You rarely are aware of legacy
software until you urgently need to change . And the time it takes to modernize that
software is often longer than you have . If only you’d have known earlier . But before
you needed to change how the business operates, the software was perfectly fine .
As we’ll see, eventually, the long-term fix for legacy software is prioritizing the
ongoing modernization of your applications . That is, maintenance is a high priority,
even business critical . In other words, you are stuck in the legacy trap, when the
pace of change needed by the business overweights by far the application speed
to market .

While you, the executive, may not have known you were in the legacy trap, the
frustrating thing is that many other people were well aware of the coming need to
modernize your software . There are often enterprise architects and engineers who
tried to warn management for a while but have grown tired of playing Cassandra .
And, of course, how often are people rewarded for pointing out a problem in past
decision making? More than likely, you, the executive, need to force this issue, to ask
and welcome the bad news . Perhaps it’s time to talk with some senior engineers and
architects and ask them about their legacy worries . James Copeman points out
patterns to look for when doing this inquiry: How often has your staff changed the
core systems that your apps rely on? Are they instead adding layers on top of that
system, and layers on top of those layers? If your staff hasn’t updated the core
systems in a while, you’re likely close to, or deep into, the legacy trap . This is where
you need to step in and set priorities to fix these legacy problems .

4 . CIO Dive . “Overcoming legacy debt is a process problem, not a modernization one .” Katie Malone . August 24,
2021 .

5 . Michael Feathers . Working Effectively with Legacy Code . 2004 .

https://www.ciodive.com/news/legacy-IT-app-modernization/605515/
https://www.ciodive.com/news/legacy-IT-app-modernization/605515/
 https://www.linkedin.com/in/jamescopeman/
https://www.ciodive.com/news/legacy-IT-app-modernization/605515/

 8

The Legacy Trap

What modernization means
So, we have an idea of what legacy software is . Now we can define modernization .
While the term “modern” seems vague, it is likely that every person you chat with will
have a slightly different definition . In the minds of the application executives we work
with, we see four types of desired transformations emerging:

• Making apps better cloud or dematerilized data center citizens

• Evolving the application architecture (Data/Event/Test/Domain Driven Design,
microservice, multi-channel, responsive)

• Improving collaboration, security, and governance along the app lifecycle (lean
product management, agile practices, Dev/Sec/Biz/Network/Fin/Ops)

• Making apps more intelligent, deterministic, configurable (automation, machine
intelligence, rules engine)

Primarily, modernizing means making whatever changes are needed to make adding
new functionality to the software easy, quick and affordable . This means changing
the design of the software, writing new code and tests, moving the software to new
infrastructure, or rewriting the software from scratch . Secondarily, modernization can
mean optimizing to lessen the negative impact on time, money and your attention .
Maybe you can’t get rid of the legacy application, but you can make living with it
less terrible .

Let’s look at the major types of software modernization .

Types of modernization
So far, there are seven ways of modernizing any given app . Perhaps humanity will
one day discover an eighth, ninth or even tenth if we survive long enough, but these
seven come up over and over . By design, these seven types of modernization all
begin with the letter R so that we can label them the seven R’s . Here they are,
ordered from least to most effort, risk, and value6 .

6 . Several of these R’s have been used in the industry for many years . We have built these R’s on those and also our
own work . Chris Swan documented many of the R lists and variations, from the 4 R’s to the 7 R’s, to some other R’s .
Most famously, Richard Watson published a 5 R’s paper at Gartner some 10 years ago and has been updating it since .

Retain Keep and don’t touch for now.

Retire

Rehost (lift and shift)

Replatform

Refactor

Repurchase/Replace

Decommission end-of-life application.

Change the underlying platform
(runtime, framework, middleware, OS).

https://blog.thestateofme.com/2020/08/04/5-6-7-rs-of-cloud-migration/
https://www.linkedin.com/posts/richard-watson-852136_cloudcomputing-cloud-activity-6950128961028841472-JdbU/

 9

The Legacy Trap

Retain
Keep and don’t touch the app for now . That is, make no changes and keep things
running as they are . This is probably the default option for most apps in your
portfolio . Doing nothing can be a wise strategic choice .

Retire
Decommission an end-of-life application . That is, shut it down . In this case, your
analysis often finds the application is used very little, has been superseded by
another application, or is no longer profitable to run . A good example here is the
Minitel service, once the world’s most successful online service . Once the internet
gobbled up all of “online,” Minitel was finally retired after 32 years of operating in
June 2021 . Applications that were purpose-built for regulations that no longer exist
are another common app to retire, as are applications that run parts of your business
that no longer exist .

Rehost
Often called lift and shift, this is repackaging and moving existing applications with as
few changes as possible . This is sort of like just copying an application and all its data
to a new computer . Typical examples are cloud and data center migrations or the
process your company has been through while virtualizing its data center .

Replatform
Here, the application remains the same, but there are significant changes to the
underlying technology stack and platform (runtime, framework, middleware,
operating system) of your app . This can require changes to the actual application
itself, but they should be very minimal . For example, replatforming might mean
moving from an Oracle WebLogic Server to Spring Boot, from .NET to .NET core,
from Windows or AIX to Linux, or moving your application from virtualization
to containers .

Refactor
In this type of modernization, you’re finally changing your application’s code
deliberately . When you refactor, you redesign and rewrite parts of your application
to take advantage of new platforms and capabilities . This is distinct from rewriting in
that the functionality of the application stays the same and isn’t updated; just the
internals of the app are changed . This is sort of like keeping the exterior and interior
of your car looking and operating all the same—hopefully a powder blue 1980 Monte
Carlo with a dark blue interior—but replacing everything under the hood and under
the body . For example, you might refactor your application to scale from thousands
to millions of users as your business gains customers . From video game back ends
(e .g ., Diablo II) to core banking systems (e .g ., the open banking evolution) and
governmental services exposed to citizens over the internet (e .g ., the German Online
Access Act), this option is often the default cost-effective choice to rejuvenate
existing systems while bringing them to a new era .

https://en.wikipedia.org/wiki/Minitel
https://www.vmware.com/topics/glossary/content/data-center-migration.html
https://www.flickr.com/photos/cote/161289600/in/photolist-ffDQP-ffDMb-ffDQd-aFDmfk-2KPxc
https://www.flickr.com/photos/cote/161289600/in/photolist-ffDQP-ffDMb-ffDQd-aFDmfk-2KPxc
https://us.forums.blizzard.com/en/d2r/t/diablo-ii-resurrected-outages-an-explanation-how-we%E2%80%99ve-been-working-on-it-and-how-we%E2%80%99re-moving-forward/28164
https://en.wikipedia.org/wiki/Open_banking
https://www.onlinezugangsgesetz.de/Webs/OZG/EN/home/home-node.html
https://www.onlinezugangsgesetz.de/Webs/OZG/EN/home/home-node.html

10

The Legacy Trap

Rewrite
The name says it all: You restart from scratch and write a new application the way a
thriving software company would . Your organization still needs what the application
does (for example, registering for fishing licenses or scheduling ice machine
maintenance), but the old application no longer solves the problem well and is
challenging to maintain or evolve . Instead of just duplicating the same screens and
workflows but with new fonts and colors, this type of modernization gives teams the
chance to reimagine how the application functions . Rewriting carries the most risk
but will bring the maximum outcome . You’re given the chance to newly understand
the problems your company addresses and the way your software solves them .

Replace
In this scenario, you still need the functionality the application provides, but you no
longer find value in owning the application . Instead, you outsource it by replacing it
with a commercial off-the-shelf (COTS) application, often a software-as-as-service
(SaaS) solution . The same outcomes are achieved, but you now use a third-party or
outsourced option . Your development teams can now focus on the apps securing
your competitive advantage .

Such transformations are straightforward for highly standardized systems, such as
mail or file servers . Also, while remaining in the same software vendor’s ecosystem
(e .g ., Office to Office 365), replacement paths are frequently covered by exhaustive
guides and tools .

For non-standard, end-of-life systems, this is often the most effort-intensive option .
For example, transitioning your highly customized enterprise resource planning
(ERP), customer relationship management (CRM), human resource management
(HRM), or e-commerce system to another will likely be a daunting task . The effort is
usually worth it, however, as all that customization, stockpiling over the years,
becomes a boat anchor that’s causing all your problems .

Prioritizing with technical and business drivers
Once you start identifying software to modernize, you’ll soon discover there’s too
much of it . Organizations often find there are thousands of applications and services
on the list . Air France-KLM, for example, has been working on modernizing 2,000
applications . Larger organizations could have even more, especially after many years
of mergers and acquisitions .

Putting together a plan for what to modernize is confounding and endless if you only
focus on technical drivers to modernize . As you assess whether to modernize each
application, the answer will frequently be “yes” because, for the most part, there’s
always a better way to run and build applications . This quickly creates a large,
overwhelming list .

Modernization project failure is often caused because there is little to no focus and
alignment on the business drivers and goals of modernizing the applications . We find
that most modernization strategies fail because they focus too much on the technical
aspects and not enough on the business-related aspects .

https://tanzu.vmware.com/content/webinars/dec-11-how-airfrance-klm-is-modernizing-2-000-legacy-applications-webinar
https://tanzu.vmware.com/content/webinars/dec-11-how-airfrance-klm-is-modernizing-2-000-legacy-applications-webinar

11

The Legacy Trap

So, in the next section, let’s look at the critical role that linking business value to
modernization plays . Now that we know the “what” of modernization, let’s look at
the “why .”

Focus on business outcomes (or, business in the front,
modernization in the back)
One way to think about the legacy trap is to finger-wag at managers who
deprioritized the needed maintenance work . Instead of spending time and money on
upgrading old services or rewriting applications in newer architectures and
frameworks, they chose to bolt on new features or just chose to do nothing to save
money . This is not always a fair assessment .

You might also be in the legacy trap because the decisions that slowly walked you
into that trap made perfect sense at the time . Here, we think of two types of
applications that most people use frequently: filing expenses and filing health
insurance claims . In both cases, the software often feels ancient, dated, and tedious .
It doesn’t help that the workflows in each are essentially justifying why you should
get money with the very real prospect of people telling you no for weeks on end
until you unlock the riddle of how to categorize your requests and include the
proper paperwork .

While the experience may be bad, those businesses likely had no urgency, no need
to modernize their user experience (UXs) and interfaces (UI) . In both cases, most
people don’t get to choose the software they use; the company they work for does .
So, there’s no need to compete on your feelings and productivity . Indeed, the actual
customers of these applications are often people who don’t actually use the software:
large organization managers who, at worse, have admin assistants to handle such
annoyances . Unless modernizing your software directly addresses a business need,
you won’t get far . And maybe that’s as it should be .

The error in incorrectly prioritizing application modernization in favor of other
activities, such as adding new features, often has to do with deferring suffering to the
future . You trade short-term benefits for an intangible debt in the future . Indeed, the
term tech debt is used to describe the mounting deferral of maintenance tasks . Just
as taking on too much debt can bring down a company, taking on too much technical
debt will grind your business to a halt . Recall the short-term insurance example from
the start of the book: Until the business need to grow revenue came up, there was
really no reason to modernize the software stack that supported the current,
successful business .

Navigating this line between taking on helpful debt and too much debt is a rare
skill . Analogous to actual debt, a good executive, supported by their team, will
know when to service tech debt by slowing down feature delivery to ensure
long-term flexibility .

12

The Legacy Trap

This gets us to our first principle of escaping the legacy trap: The only reason to
modernize your software is to give your business new capabilities to deliver on
new business ideas . Instead of proposing that you need to modernize your
software estate simply because it’s old, start from the why: Your business (now)
needs flexibility and speed to change and innovate, so you’re going to need similar
capabilities from your custom-written software . This will involve updating some of
the services, adding new APIs, and maybe even replatforming to new infrastructure .
The trick is to position modernization as simply part of the normal
development process .

Doing this for a large, highly visible project—such as the core workflow for renting
cars, for example—is high risk and stressful . Instead of waiting for the sudden need
to modernize everything all at once under time pressure, you should focus on
regularly, proactively gardening your application portfolio . Pick apps to modernize
that are closely connected to the business, following the same approach of
modernizing for the sake of new business capabilities but with lower risk . You pick
small, meaningful apps to modernize instead of big ones . We’ll talk about the
method we’ve used with hundreds of organizations in a little bit . First, let’s talk about
why you take this approach .

Why nibbling at the edges is better than taking big bites
Modernizing software is a difficult task . As with so much programming, the actual
designing of the app and writing code is the least of the problems . The difficulty
comes in managing the integrations and dependencies on other services, and the
way in which the software is configured and run in production . This is where legacy
software is particularly thorny . Most organizations have poor visibility into how
changes in one part of their portfolio will affect other parts of their portfolio . You
can’t just change customer or inventory databases, for example, because so many
other apps depend on the way that data is structured and accessed . So, you have to
be careful and deliberate . Though it may sound professionally crazy to say it out
loud, you have to be prepared to fail and roll back changes . In short, you’ll need to
learn a lot, find out where the pitfalls are, and adapt your plans accordingly .

This is why starting with smaller, lower visibility apps is key . These apps should be
customer (or internal employee) facing but should have as few dependencies on
other apps and services as possible . When your changes to these apps cause
problems or schedule delays, the effect on the business will be minimal . This gives
you the chance to learn firsthand what modernizing in your organization will be like .
Who do you need to talk with to get networking access to run a new access layer on
your ERP database? How long does it take to get a meeting with them, and do you
need to cajole them to help you? How will you deploy the new app into production,
and are there governance processes you need to go through to launch in the EU?
These are all things outside of the actual programming and testing that you’ll need to
figure out as well .

In short, you have to give yourself time, space, and safety to learn by failing . That’s
why you proactively pick small but meaningful modernization projects to get your
teams trained up for the big apps when they come along . This is a major mindset
change when you’re escaping the legacy trap: You’re not just changing applications,
you’re establishing new organizational capabilities .

https://tanzu.vmware.com/content/vmware-tanzu-labs-solution-briefs/improve-how-your-teams-build-custom-software-with-vmware-tanzu-labs?utm_campaign=devrel&utm_source=cote&utm_content=legacytrap

13

The Legacy Trap

Common business outcomes used to drive modernization
Justifying modernization because the business needs to launch a new app or new
features to support a new business or modify an existing one is straightforward . You
can attach the modernization project to the business strategy and case . However,
there are other, very common business capabilities that justify modernization .

Amy Hertzog and Corinne Dubois cataloged these common drivers:

Creating an innovative, customer-first corporate culture

• Technology investments might center on automating a pipeline to production,
creating a new asset inventory system to streamline the decommission of unused
resources, or something entirely different .

• Investments in employees might focus on upskilling project managers to product
managers over specific agile framework training, or vice versa .

• Efforts to change the organization’s culture might focus on creating a culture of
quick feedback cycles or a cross-functional partnership (or both) . It might focus on
heavy use of outside consultants or a slower, internally grown set of coaches .

Better customer responsiveness and time to market

• Technical solutions should minimize barriers to releasing code, such as continuous
integration and delivery (CI/CD) .

• Efforts should ensure developers have incentives (and training) to connect with the
customer and deliver software in smaller sections of value .

• Culture change should focus on moving development teams from fixed projects
measured on cost/time constraints to customer-focused products measured on
objective or outcomes achievement .

Cost reduction

• Implement technical solutions that help automate some of the control guarantees
the organization needs .

• Improve relationships and processes for the people who need to coordinate across
organizational boundaries .

• Institute a culture of transparency around prioritization based on
cost-value analysis .

You can use this list of common drivers to identify reasons for modernization that are
not as straightforward as creating a new app or features .

Outcome-led app portfolio rationalization
We now have the guiding principle for application modernization: What you select to
modernize and when is driven by what your business needs . Now it’s time to go over
the actual work of modernizing your portfolio . This chapter will walk you through
the key activities and vital concepts to build and execute an efficient
transformation strategy .

https://tanzu.vmware.com/content/blog/guiding-principles-of-digital-transformation

14

The Legacy Trap

First, we’ll look at the three core components of a portfolio rationalization strategy .
Second, we’ll expand on how to quantify the desired outcomes and build a business
case for the modernization strategy . Finally, we’ll walk through the process for
selecting and then modernizing each application: finding and grouping all apps,
elaborating a decision framework, iterating on the code, and continually using
feedback and real work to adjust your strategy .

Strategizing portfolio rationalization
Strategy means many different things in different contexts: how a business will
achieve competitive differentiation and revenue, principles to follow and constraints
to work in, quantifiable outcomes we want, or just a simple, ordered list of things to
do (a plan) . For us, a modernization strategy answers the three following questions:

1. Disposition: To what degree should I transform my apps? For example, should I
completely rewrite or just move them from on-premises to the public cloud?

2. Stacks: What are my target technology stacks?

3. Prioritization: Which apps and teams should I transform first?

Answering these three questions is the start of creating your modernization strategy .
Let’s look at each .

Disposition
Identifying the right level of modernization, or disposition, for your apps is crucial to
maximizing the value you get out of it . It makes no sense to transform every single
app into its better self . Although the target disposition might seem obvious for
technology-driven, horizontal modernization programs, it’s never the case .

As developed previously, we have seven disposition options for each application:
retire, retain, rehost, replatform, refactor, rewrite, or replace your applications .

Stacks
Thinking through where and on what your apps run is a key consideration . By stacks,
we mean technological things, such as public or private cloud, or on-premises;
mainframes instead of virtualized x86 environments; different programming
languages, frameworks and runtime stacks; and architecture models, such as
microservices, instead of monoliths .

Focusing on the infrastructure layer below the application may seem too deep down
the stack, sort of like worrying about what type of lumber you’re using in your
house’s rebuild . However, just like the type of lumber and piping you choose,
choosing the platforms your apps run on is incredibly important . Platform choice will
drive costs and will also determine (or limit) your application’s capabilities and how
the application is managed .

Such stacks typically comprise the following:

15

The Legacy Trap

• A distinct infrastructure-as-a-service (IaaS) layer (e .g ., landing zone on hyperscaler,
on-premises, hybrid models)

• An application platform, such as platform as a service (PaaS), container as a service
(CaaS), or function as a service (FaaS)

• A software development stack (programming languages, frameworks in use,
components, and even development tools), including design principles (event
driven, microservices, cloud native)

As shown in the following diagram, it is all about choosing the right abstraction layers
for your development and operation teams . Strategically you would want to push as
many workloads as technically feasible to the top of the abstraction hierarchy .

Stacks: Available Application Abstractions

Prioritization
Aiming for the highest impact with the least effort at the beginning is a great idea .
Such prioritization can only be achieved by deeply linking transformational work to
your desired business outcomes and objectives . With this approach, you increase the
chance that you transform the right apps before you transform your apps right .

Starting with the desired business outcomes: Quantifying the business
value of modernization
Many of the IT departments we supported had a hard time convincing the business
to let them modernize existing applications . Efficient and impactful modernization
efforts require alignment with well-defined business outcomes . Otherwise, you’ll
likely end up addressing painful IT symptoms instead of business problems: replacing
one tech with another, adopting a new platform, or transforming architectures but
then struggling to deliver business value . You won’t be able to make a business case
or will solve the wrong problems well .

Every modernization initiative should start by understanding your organization’s
current business challenges and defining the desired outcomes . Here as well, we
want to begin having the end in mind, to paraphrase one of Stephen Covey’s habits
of highly effective people .

Lower development
complexity and higher
operational efficiency

Hardware

IaaS | Virtualization

CaaS | Container Orchestration

PaaS | Platform Services

FaaS | Serverless

Higher flexibility and
lower standardization

Stacks: Available Application Abstractions

https://en.wikipedia.org/wiki/The_7_Habits_of_Highly_Effective_People
https://en.wikipedia.org/wiki/The_7_Habits_of_Highly_Effective_People

16

The Legacy Trap

The set phrase “business outcome” is a generic concept applied to all sorts of
organizations . In general, all businesses want to increase revenue, retain existing
customers (and get more money from them), and increase profits often by cutting
costs . Telling you that, though, is like saying water is strongly recommended as a
major part of your diet . Many people find it difficult to directly connect changes to
their software to business outcomes . This is especially true if software has been
delivered as a series of projects rather than an ongoing product7 .

When you can’t connect your software to business outcomes directly, you’ll need to
focus on the capabilities your software provides to the business . This will allow you to
evaluate your portfolio based on the business outcome the software helps make
possible . When it comes to transformation initiatives, these capabilities are usually
speed, savings, security, stability, scalability, and shining in this process . Let’s look at
a summary of each of these and the capabilities they provide .

Speed gives you the ability to release software more frequently to learn what
features are the most valuable . It also allows you to keep the software up and
running because you can respond quickly to problems:

• For developers, speed means less time between the idea to running in production .
This means shortening the release cycle . The business outcome is faster time
to market .

• For operations, speed means less time spent planning, approving, and building
infrastructure . It also means faster times to diagnose problems and, critical to
DevOps and site reliability engineering (SRE), faster time to recover from errors .
This usually means focusing on a huge degree of automation .

• For product managers, faster cycles give them more feedback on how well the
software addresses real customer problems and solves them . The frequency of
feedback is often unappreciated: More feedback and faster learning means the
organization becomes smarter8 .

Saving money by avoiding and reducing costs is often the top topic for major
modernization projects . Savings are achieved by conducting one or several of
the following:

• Replace proprietary, costly software with generic equivalent technologies to reduce
the Total Cost of Ownership (TCO)

• Optimize how people and organizations work . Most organizations follow zombie
processes that are no longer required or could be automated and sped up . or
example, on one project, the US Air Force was able to speed up releases from
years to three to six months after automating many steps of compliance policy
checking9 . This type of savings is often achieved by changing how people work
together and adopting standards across the organization .

• Staff are more productive, experience less wait time, and otherwise can develop
code to run the business .

7 . For a longer discussion on the difference between project and product mindsets, see Changing Mindsets .

8 . For a longer discussion on this topic, see Monolithic Transformation .

9 . For more, see around 18:00 into the talk “AUSA 2021 Warriors Corner: By Soldiers, For Soldiers: Building an
Organic, Soldier-Led Software Development Capability in the Army,” October 10th, 2021 .

https://learning.oreilly.com/library/view/changing-mindsets-the/9781098105839/
https://tanzu.vmware.com/content/ebooks/monolithic-transformation
https://www.dvidshub.net/video/817203/ausa-2021-warriors-corner-soldiers-soldiers-building-organic-soldier-led-software-development-capability-army
https://www.dvidshub.net/video/817203/ausa-2021-warriors-corner-soldiers-soldiers-building-organic-soldier-led-software-development-capability-army

17

The Legacy Trap

Security is table stakes for any application . Of course it needs to be secure .
However, you can track the strength of security and your ability to be responsive and
resilient in security . In short, there are often ways to do security better:

• Follow the three R’s of security: rotate credentials to prevent malicious access,
repave your applications to return to a secure state, and repair them by quickly
deploying patches .

• Use DevSecOps tooling and thinking to have more confidence in your risk
assessments and verification of software builds .

• Increase collaboration between developers and security staff to work
closer together .

Stability means your application works . It’s available and keeps running with little or
minimal interruption of service . Once modernized to a cloud native architectural
style, your applications will have several new stability capabilities:

• The ability to deploy new versions of your software with rolling updates that slowly
move users from the previous version to the new version, preventing downtime and
maintenance windows where the software is unavailable

• Better high availability and failover between different data centers and
cloud because of the cloud native stateless architecture and emphasis on
multi-cloud standardization

• Fewer configuration errors between development and production because the
environments are either nearly similar or exactly the same

Scalability is the capability to handle growing numbers of customers and usage . It’s
the business capability to grow . Stability and scalability are closely related, with each
enabling the other . Better scalability offers several benefits:

• Savings through better resource utilization: If you can scale up quickly, you can
often scale down quickly—which means paying less if you’re working with
cloud pricing .

• Better capacity planning: This leads to cost savings but also to the capability to
handle growth .

• The ability to add more computing power across different data centers and clouds:
This improves stability as well as speed .

To use the six S’s to link your software to business outcomes, you’ll likely need to
quantify them . There are some obvious ways to do this; for example, the speed of
software releases, how quickly and often you can deploy security fixes, and money
saved . However, you may need to come up with some custom metrics as well10 .

Start small and iterate
You’re probably thinking, “This is a lot of work when multiplied over thousands of
applications .” But you can force yourself to make it simple and quick to show
business value if you work iteratively instead of modernizing all of your applications
at once .

10 . For examples, please see the S’s framework and Coté’s talk “Beyond DevOps Metrics .”

https://tanzu.vmware.com/content/blog/the-built-to-adapt-benchmark-will-help-companies-to-set-a-new-course
https://www.youtube.com/watch?v=qp8v6VNdrDQ

18

The Legacy Trap

We’ve used a simple, short workshop format with hundreds of organizations to start
modernization programs and start delivering modernized apps in 10 weeks or fewer .

These inception workshops bring together the transformation leadership team,
putting business, architecture, program, operations, development and management
all in one room to work as efficiently as possible . In this time frame, the team
explores goals and anti-goals . This helps bootstrap the overall modernization
strategy by creating concrete objectives with associated key results (OKRs) . These
goals will be the north star of your transformation team to ensure that all time
invested contributes to the greater business good .

Once your goals are defined, the next step is to figure out what application to start
with . This is a key part of how we’ve seen organizations successfully modernize their
applications: They start with one application, not all of the applications at once . This
can seem risky for a business . You’ll be under pressure to make big promises during
your annual planning cycle and show that your business case has a large payoff, a
strong ROI .

You and your management are probably thinking that if every developer team does
two months of training and planning, you can get all your groups working in parallel
and modernize by the end of the year . Promising that you’ll modernize hundreds,
worse, thousands of apps in the first year is a terrible strategy and will likely fail .
Instead, you need to start small, deliver one or two apps, learn and adapt, grow a bit
more, iteratively learn and adapt, and so on . This will take time, likely months . But
instead of overpromising and failing, you’re more likely to succeed11 .

Let’s next look at how you find the initial and subsequent applications to modernize .

Find the applications
Application is one of those words that means a lot and not much simultaneously: It’s
broad, not deep . Depending on what they work on, each person you talk with is
likely to have a different definition . Someone who works on mobile apps will think of
an application as the screens and applications a user interacts with . Someone that
works on software that checks a customer’s available cell phone minutes will think of
that as an application even though a human is not directly involved in using it .
Someone who’s in charge of processing payroll changes will think of that as an
application . Even worse, each of those people might use an additional name for the
software they work on—”service” is a popular term, and mainframe-minded people
might say “workload” or “batch job .”

Applications run the business
So, let’s establish our definition of application . First, an application is software that
runs the business . That may be obvious, but people often forget that it’s the primary
guiding principle for applications . When you look across your application portfolio,
you’ll find many applications that don’t seem to strongly connect to the business or
provide real value . Applying the six S’s to strongly link applications to business
outcomes will help you find this real value . Focus on and remember this first
principle: Applications run the business .

11 . We realize that this pleading is usually unrealistic in most large organizations . Get as close to the spirit of what
we’re saying as possible . There are tactics for working with management and corporate finance that are obstinate to
reality . For some of them, see The Business Bottleneck and Changing Mindsets .

https://tanzu.vmware.com/developer/practices/goals-anti-goals/
https://tanzu.vmware.com/content/ebooks/the-business-bottleneck?utm_source=cote&utm_medium=book&utm_content=legacytrap
https://learning.oreilly.com/library/view/changing-mindsets-the/9781098105839/

19

The Legacy Trap

Applications usually bring together four elements:

• User experience (UX): The provided UX makes its usage valuable, efficient, and
delightful . This manifests itself in screens as well as in the workflows people go
through to do something with the software . As a simple example, when filing
expenses, taking a picture of a receipt with an app instead of manually entering the
details is generally a better user experience .

• Interfaces: Different interfaces expose part of the application’s functionality . This is
often in the form of user interfaces, the actual screens, and the workflows people
interact with . But these can also be services that other applications use instead of
humans . In this case, these interfaces are often called services or APIs .

• Business logic: Often referred to as intelligence, business logic defines the
application’s core behavior and executes it . This is the code that actually
does something .

• Data: This is a collection of data points and processes that the application uses,
creates, and changes .

Automate application catalogs
Believe it or not, just finding all applications deployed within an enterprise is often a
very daunting task . Although the concepts in application portfolio management were
developed in the late 1990s, best practices are not widely followed . Despite efforts to
automate asset databases, such as configuration management databases (CMDB),
application lists are often managed manually, leaving the official lists incomplete and
out of date . To get a full view of the applications in your portfolio, you’ll often have to
look over several systems, CMDB, spreadsheets, and maybe even whiteboards . In
short: It ain’t going to happen .

Instead of relying on manually updating spreadsheets to identify and list all existing
application and infrastructure assets in a central inventory, we recommend
automating the process . Tools to automate the discovery process can combine
several approaches: be agentless, conduct port and packet scans, rely on automated
build and deployment pipelines (infrastructure as a code, CI/CD, application
repository), or run on SaaS or on-premises environments . They could range from
self-written scripts, to commercial offerings .

Bucketize and organize information
Once you’ve found the applications, you’ll categorize (or bucketize) them based on
the type of application they are and the technical characteristics of each application .
Buckets group similar applications based on their business and technical similarities .
With well-defined buckets, portfolios of thousands of applications are often grouped
into tens of application archetypes . This allows you to analyze and work with those
applications in aggregate instead of one by one . This step reduces complexity and
provides a better grasp of your entire portfolio .

There are several ways to bucket apps, and you’ll need to find the ones that work
best for your organization . Let’s look at the most common methods .

20

The Legacy Trap

Application type
One of the most common ways to categorize applications is by type . Type is often
defined by how the application is accessed and used by people . These are the most
common types:

• Native apps run directly on a phone, tablet, desktop, gaming console, or
custom hardware .

• Web apps are accessed by a web browser with a server on the back end .

• Terminal apps run on a mainframe, as Windows virtual desktop apps, or in a
console without an elaborated user interface .

• Processing apps run as a batch process, stored procedure, or enterprise
integration middleware .

Most of the time, you’ll likely categorize applications by their type . It’s essentially for
prioritizing based on technical feasibility and risk to changing the application’s source
code . So, bucketizing by type is a good place to start .

Application architecture
Another way to group applications is by their architecture . As with so many software-
related terms, to developers, architecture means many things, but what we mean
here is the structure and style of the application . Another phrase commonly used
here is software design . Any piece of software is composed of different components,
if only conceptually . Some architecture styles put all those components on one
server, tightly integrated together . Others divide them up by server side and client
side, and at the extreme end, a style such as microservices divides the application
into hundreds—often thousands—of independent parts .

Application

Native app

Web app

Terminal app

Processing app

phone, tablet, desktop, gaming console, custom hardware

http://check-it-out.com with your web browser

mainframe, console, host

batch, stored procedures, enterprise integration

Monolith Client Server N-Tier Microservices

InterfaceUser experience

Data

https://en.wikipedia.org/wiki/Software_architecture

21

The Legacy Trap

Application function
Defining what an application does, its function is straightforward when you’re talking
about an application with a user interface (UI) . However, as mentioned above,
application often means a service with no UI that’s used as a component in another
workflow . These UI-free applications are, without any irony intended by developers,
unfortunately, called headless applications . In fact, you’ll find that many of the
applications you’re modernizing are these headless applications . Or, they may seem
like that after you use them . Here’s a common list of functions:

• View delivers an interactive user experience and visualizes information .

• Connect exposes, adapts, consumes, serves, and integrates functionality
through interfaces .

• Store reads, saves, and maps data to file, database, or cache storage .

• Sustain supports nonfunctional aspects of existing systems, such as transactionality,
security, testing, logging, auditability, high availability, and failover .

• Execute processes, computes, validates, automates, and applies rules covering
some business logic .

Application repository
You’re almost done creating a quick profile of each application . There are other
characteristics apart from the application’s function and type that you’ll need to
gather . This information mostly has to do with the context of the application, things
such as:

• Information about the application, such as name, department, and current version

• A list of key stakeholders across the application lifecycle: product owners, lead
architect, test manager, business owners

• Regulations and other policy that the application must conform to

• Captured technical scores on complexity, efforts, security, and business-relevant
information for prioritization purposes

There may be other attributes you want to capture, such as desired release date,
usage, and so forth . What’s important at this point is to construct your portfolio . Like
all mission-critical work, this is usually done in a spreadsheet, as the following
screenshot shows .

Application

Connect
interact, adapt,
serve, integrate, expose

Store
File, map, read, save
persist data to database

Sustain
Transact, secure, test, log,
audit, fallover, high-available

Execute
Process, compute, apply rules,
validate, automate

22

The Legacy Trap

With a quick-and-rough portfolio put together, you can now start to select which
applications to modernize . To read more about this kind of process, check out
VMware Tanzu’s Rapid Portfolio Modernization process .

Craft a decision framework
So far, we’ve defined our desired business outcomes and created a list of all relevant
applications grouped by buckets . Next, we’ll use a 2x2 matrix, also named “impact
effort matrix”, to force rank the applications and determine which ones to start with
first and how far we should modernize . The two factors for this are the technical
feasibility of successfully changing the application and the business value you hope
to gain from modernizing the application . That is, how hard will it be to change and
will it be worth it?

Gauging technical feasibility perfectly is impossible until you start working on the
application . However, you can get a good enough sense for your initial analysis .
Typically, each application can be assessed and scored leveraging automated
analysis tools that focus on several factors:

• Feasibility: What will it take to technically move the application to a new stack? For
example, what will it take to move from traditional, on-premises infrastructure to
public cloud? There are several automated toolkits that will do this analysis for you,
such as Cloud Suitability Analyzer, Windup, and IBM Migration Toolkit .

• Security: How vulnerable are your applications through embedded third party
libraries and code smells? Dependency analysis and static application security
testing (SAST) tools like OWASP Dependency-Check, Find Security Bugs Snyk and
Grype provide great help .

• Quality: Consider reflecting code duplication, languages used, anti-patterns,
documentation, to seize maintainability and extensibility .

The business value from the transformation will help to focus on the right
applications . It should be derived from the business outcomes you initially defined
(OKRs on the 6S) and could reflect how differentiating one app really is for your
business . For example, an app sharing the corporate cafeteria menu is less likely to
have a high differentiating value for a car manufacturer than a connected-car app .

https://tanzu.vmware.com/rapid-portfolio-modernization?utm_campaign=devrel&utm_source=cote&utm_content=legacytrap
https://tanzu.vmware.com/content/blog/cloud-suitability-analyzer-scan-score-apps-cloud-readiness?utm_campaign=devrel&utm_source=cote&utm_medium=book&utm_content=legacytrap

23

The Legacy Trap

Similarly to an Eisenhower, matrix helping to escape the urgency trap by rating
urgency and importance of activities and take action, our decision framework relies
on a 2x2 matrix where one axis represents business value and the other the technical
feasibility to successfully change . Applications in the upper-right quadrant have a
high business payoff and low modernization effort and risk . These are the best
applications to start with .

We’ve found that in the first few rounds, mysteriously, all of the apps end up in the
upper-right quadrant . This is actually no mystery: Each person tends to think their
applications are the most important . If this happens, you need to zoom into just that
quadrant by moving both axes to recenter the matrix . Repeat this until you end up
with obvious winners instead of a stack of notes . Often, you’ll find that some people
will not know the priorities and import of other applications, nor of their own once
they try to justify why their application is so critical . This is a bonus of the process; the
team gets more familiar with the portfolio as a whole .

Such a decision framework can typically be elaborated in a few days, without
spending months of analysis paralysis trying to understand the specifics of every
single app in your portfolio . It’s powerful to achieve alignment and transparency with
all stakeholders . Far from a dogmatic and immutable source of truth on disposition,
this framework should become a living, evidence-based decision guideline to drive
prioritization and transformation .

N
O

T
U

R
G

E
N

T
U

R
G

E
N

T

TE
C

H
N

IC
A

L

NOT IMPORTANT IMPORTANT Low Impact

H
ig

h
F

ea
si

b
ili

ty
Lo

w
 F

ea
si

b
ili

ty

Delegate Do First

Eliminate Schedule

Eisenhower Matrix
Escape the “Urgency” Trap

Impact Effort Matrix (2x2)
Align modernization efforts & impact

High Impact

BUSINESS

Business
Impact

Technical
Feasibility

Retain Retire Rehost Replatform Refactor Rewrite Replace

Technical Considerations

• Framework, runtime

• Architecture design

• Statefulness & data

• Use of proprietary tooling

• Dependencies, integration

• Usage, workload

Decisioning Model

A framework for disposition planning,

prioritization and governance.

Business Considerations

• Operational and license costs

• Time-to-market factors

• Revenue opportunities

• Business criticality

• Risk tolerance

• Change frequency

Organizational and People Factors

• Domain expert availability

• Org structure, maturity

• Lifecycle stage

• Calendar dependencies.

24

The Legacy Trap

The reason to start small is to learn the process for doing application modernization
in your organization . There are many commonalities to that process across
organizations, but organizations also have their problems and ways of solving them .
So, learning from the work done should be incorporated into the next iteration .
While being transparent to everyone, the modernization decision model becomes a
living framework updated after each transformed application . For example,
organizations we work with often discover in their initial projects that they’ll need to
work with networking, security, and compliance a lot more than they accounted for .
They use this newfound knowledge to reassess the technical feasibility and plan the
next round of apps . Organization factors, such as the availability of domain experts,
team interest, project dependencies, and deadlines, are often used as a third
dimension to further filter and prioritize work . Finally, this framework should be
owned and maintained in-house as it defines the very essence of your modernization
strategy, perfectly aligned with your business strategy .

Case study: Digital whiteboards
During the first years of COVID-19, companies were forced to shift to 100 percent
remote working . For an activity like whiteboarding that depends on having everyone
in one room, this would seem very troublesome . However, in being forced to find
new ways of working, many organizations we work with discovered online
whiteboards, such as Miro and Microsoft Whiteboard .

In our opinion, these turned out to be even better than meatspace whiteboards for
modernization analysis and likely any type of whiteboard-driven analysis . This is
because updating the whiteboards is easier, offers better tracking of the
whiteboard’s history, allows for more collaboration over time because people can
add comments online at their own time, and enables much more transparency that
leads to more information because anyone can access the whiteboard . Editing it, of
course, is much easier than moving sticky notes around an actual whiteboard in a
specific room and time zone . Also, people who are reluctant or unable to add their
input can find it easier to add to a digital whiteboard .

Even if you’re all in the same room, using digital whiteboard could be considered as
the way to go .

Iterate and improve
After a time frame of two to six weeks of analysis work, you should have the first
version of your transformation roadmap, including a decision framework defining
your strategy for your applications:

• Disposition: How far should each application be transformed?

• Stacks: What are the target technology stacks?

• Prioritization: Where should we start?

With this in place, you can get the modernization ball rolling . You should assign
teams to each top candidate application . As a reminder, you should only start with
one application, or three at most . Learning by doing real work on a few pilot
applications is, in our experience, the safest, most sure way to move forward
with modernization .

25

The Legacy Trap

Modernizing how you work (or, culture is hard)
We covered how to quickly build and validate a pragmatic, outcome-oriented
rationalization strategy for your application portfolio . This is done by quickly creating
an inventory, bucketizing applications, and defining a living decision framework .

A large portion of this is tied to technology and practices . But wait a minute . This is
not enough if you want to change the way you build software and excel at it . Beyond
code and infrastructure changes, you will have to seed a new culture within your
organization to adopt a new mindset while crafting modern software . A successful
transformation has to be holistic, covering not only platform, tools, and practices, but
cultural aspects as well .

We’ll cover this in the next chapter before digging into the most effective method to
modernize legacy, monolith applications .

Escape trap: Core tenants
Many modernization initiatives focus on rolling out a plethora of tools and
technologies: migrating apps from tech A to tech B, lifting and shifting workloads to
the cloud, containerizing existing systems, and adding new tools to automate the
DevSecOps development toolchain . Too often, the emphasis is on the solution space
(e .g ., using an ad hoc tool) rather than confronting the reality of the problem space .

To unleash the true potential of your application modernization strategy, you
should focus on modernizing the organization structure, process, and culture .
Older software keeps you in the legacy trap, but so does an outmoded
organizational culture .

Changing both technology and culture is not easy . However, it’s much more
rewarding as it intrinsically turns your teams into highly motivated, state-of-the-art,
customer-obsessed development squads . In this chapter, we’ll take a closer look at
concrete shortcuts you can take to progressively metamorphose your engineering
culture and methods to become more of an Apple, Amazon, Netflix, Google, Tesla,
or Meta .

Seed a cloud native culture
It’s no contradiction to say that being cloud native does not have much to do with
cloud computing . There is an idea that the cloud is a place, a suite of technologies or
services that run somewhere in data centers . But the cloud is not just a place; it’s also
a way of working . This means that it’s a new type of IT culture .

But what does culture really mean in the context of cloud and modern apps? The
DevOps community uses the Westrum spectrum to categorize company cultures12 .

American sociologist Ron Westrum defined organizational culture as “the
organization’s pattern of response to the problems and opportunities it encounters .”
This could be broken into three cultural archetypes, as the following chart shows .

12 . For example, see the annual Accelerate DevOps Reports .

Source: DevOps culture: Westrum organizational culture

https://www.devops-research.com/research.html#reports
https://cloud.google.com/architecture/devops/devops-culture-westrum-organizational-culture

26

The Legacy Trap

Pathological
(power oriented)

Bureaucratic
(rule oriented)

Generative
(performance oriented)

Low cooperation Modest cooperation High cooperation

Messengers “shot” Messengers neglected Messengers trained

Responsibilities shirked Narrow responsibilities Risks are shared

Bridging discouraged Bridging tolerated Bridging encouraged

Failure leads to
scapegoating

Failure leads to justice Failure leads to inquiry

Novelty crushed Novelty leads to problems Novelty implemented

A pathological culture focuses on the personal interests and resources of the leaders .
Information is processed so that it only advances parts of the organization . It’s
power, political and blame oriented . A bureaucratic culture, on the other hand,
centers on channels and procedures . Innocent at first glance, it becomes problematic
when dealing with urgent problems or crises, or meeting needs beyond the limits of
the rules and process in place . Finally, there is the generative culture . According to
Westrum, a generative culture is the most effective in maintaining a highly functional
organization . When it comes to cloud native, we want a generative culture .

Constructing culture
In software, a generative culture is focused on learning, ongoing improvement, and
moving most decision making as close to the developers as possible . Rather than
relying on centralized, long-term decision making, a generative culture pushes
decision making and responsibility to the team working on the software . The people
on this team should be the best informed about what people do with their apps and
how the apps could be improved .

Shifting responsibilities down the management chain means changing the response
to failures . Failures and accidents are seen as opportunities to improve, not witch
hunts . Errors are subject to honest postmortem, and risks are shared . For example,
Netflix calls unwanted incidents surprises, eliminating negative stigma and
encouraging people to bring mistakes to light so they can be learned from . Strong
cooperation is encouraged, with cross-functional collaboration toward common
goals . There are no heroes but rather a culture that embraces individual strengths to
create cohesive teams .

27

The Legacy Trap

In fact, many cloud native companies—those that build and run scalable applications
in the cloud—make it a point of honor to publicly define the principles of their culture .
AWS has its 16 leadership principles, which champion accountability, risk-taking, and
the development of talent . Google defines a 10-point business philosophy,
encompassing team achievements and pride in individual accomplishments that
contribute to overall success . Microsoft talks about five cultural attributes, starting
with its growth mindset: “always learning and insatiably curious .” VMware has built
its culture on execution, passion, integrity, customers and community (EPIC2) . All of
these are examples of generative cultures in action .

Teams over individuals
In The Phoenix Project, an allegorical novel set in a DevOps developer’s nightmare,
we meet a superhero developer named Brent . Every organization has a Brent . The
person that knows how to do everything, with exceptional focus and problem-solving
skills, and is helpful to everyone .

In a generative culture, this kind of superhero is a problem . Very talented
superheroes are often overwhelmed with requests and meetings, predisposing them
to become a bottleneck . As they do not scale, they first burn bright and then burn
out . They make themselves irreplaceable but do not scale and leave anyway .
Typically, they appear at the last minute, find a pragmatic solution to save the day,
and then leave almost immediately afterward . This is symptomatic of a dysfunctional
team culture .

Instead, cloud native cultures rely on learning organizations and balanced teams—
autonomous groups of people with a variety of skills and perspectives that support
each other toward a shared goal . They have the resources and authority to complete
projects and are self-organizing, learning from each other through cross-disciplinary
collaboration and iterative delivery . Through pairing and knowledge transfer, each
team member could save the world .

Of course, nurturing a cloud native team does not just happen . It requires a
foundation stone and strong dedication .

Flourishing in psychological safety
According to internal research by Google, psychological safety is the most important
characteristic of high-performing teams . It allows team members to feel secure about
taking risks . In such environments, people are better able to be themselves, make
suggestions, and be vulnerable .

Crucially, psychological safety gives teams permission to learn by failing . Obviously,
the goal is not to try to make mistakes but to accept error as part of the realm of
possibility and use it to learn and improve . In other words, it’s about allowing
experimentation and play .

https://www.amazon.jobs/en/principles
https://careers.microsoft.com/us/en/culture
https://news.vmware.com/company/vmwares-culture-built-epic2-values
https://itrevolution.com/the-phoenix-project/
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/

28

The Legacy Trap

Play, learn, grow
An experiment is something we conduct to formulate and validate hypotheses . We
plan just enough . We use lean product management and craft user tests . We escape
analysis paralysis and explore fields of possibilities . Play loosens boundaries even
further, while skyrocketing team motivation and commitment . It could take the form
of chaos engineering featuring Netflix’s monkeys, a capture the flag security game, a
wheel of misfortune disaster role-play exercise, or some ChatOps bot . The playful
names of these practices emphasize the generative nature of these processes:
Although fun is not the point, the feeling of safety that comes with play is .

Adopt proven methods: Back to the future
At this point, you might feel overwhelmed by notions, ideas, and principles . Where
should we best start? What is nice to have and what will make a major impact? Let’s
cover concrete practices and approaches to help transform the ways your application
teams work into the ones of a fast-paced start-up, raising the development approach
of legacy apps to great practices leveraged for brand-new app development .
Interestingly, many of the opinionated techniques we’ll review originated in the ’90s
and are still state of the art .

Articulate and share your foundational principles
Start exploring, brainstorming, and communicating on the foundations of your
working mantras—how you collaborate, interact,and celebrate success . Do you
empower teams, embrace change, deliver early and often, give back, and improve
continuously? How important are empathy, kindness, and respect in all interactions?
Very concretely, how does your ideal engineering culture look? Great sources of
inspiration are the manifesto for agile software development, VMware’s EPIC2
values, Apple’s mission statement, Google’s core values, Microsoft’s corporate
values, and Amazon’s leadership principles .

Reflecting on this will help to evolve mindsets for the better . Including employees in
the discussion is key to the adoption of your values . Those principles are likely to
evolve over time after a major business change (see the introduction of Meta),
rebranding (see Red Hat’s new brand), merger, or acquisition .

Think big, start small, scale fast
Traditional modernization approaches reflect a waterfall approach . First, a long
analysis phase dissects the current running applications to gain some insights on how
bad the situation is . Then the target desired state is shaped, and the ideal target
meta architecture is exhaustively specified before a transformation plan can be
elaborated . This process could take so long that changes occurring in parallel could
force a restart of most of the work . It could end in a situation similar to the Forth
Bridge in Scotland that required continuous repainting . It’s so long that once the
painters reached one end, they had to start again at the other one .

https://tanzu.vmware.com/developer/learningpaths/application-development-how-we-work/principles/
https://agilemanifesto.org/
https://news.vmware.com/company/vmwares-culture-built-epic2-values
https://discussions.apple.com/thread/251301665
https://about.google/philosophy/
https://www.microsoft.com/en-us/about/corporate-values
https://www.microsoft.com/en-us/about/corporate-values
https://www.amazon.jobs/en/principles
https://about.fb.com/news/2021/10/facebook-company-is-now-meta/
https://www.redhat.com/en/about/brand/new-brand

29

The Legacy Trap

To dodge and get out of this looping deadlock (AKA analysis paralysis), a more agile
approach is crucial . Analysis and recurring tasks should be automated everywhere
possible to get rid of tedious manual work and errors . Teams should plan just
enough to start and begin with one thing . In practice, it could feel like letting
engineering teams make a leap of faith . Adopting those highly focused and
minimalistic mantras will swiftly reveal their value: quick feedback and progress,
mitigated risks, strong alignment, and a solid basis to start scaling, letting the real
work inform strategy . This is especially true for the most complicated tasks, such as
the modernization of the aged monolithic systems covering the entire value chain of
what your company does .

Adopt the fantastic three: UCD, XP, and lean
Three methodological ingredients from the agile software development world are
instrumental to quickly incubating and developing new software products: extreme
programming (XP), lean product management, and user-centered design (UCD) .
These methods are outstandingly impactful while modernizing existing applications,
evolving them into a modern software product .

Extreme Programming (XP) is a set of software engineering practices targeting high
quality, speed, and responsiveness to changing requirements . For example, it
includes practices such as test-driven development (TDD), merciless refactoring,
short iterations, CI/CD, and pair programming .

User-Centered Design (UCD) puts users—your customers—and their needs at the
center of product design and development . It takes a data-driven approach to
ensure the software you build solves real problems and delights your customers .
Beyond user interface design, it focuses holistically on user experience while
conducting user research, ethnographic studies, defining personas, producing
prototypes, integrating accessibility, and practicing service design .

Lean product management strives to find the smartest and quickest way to build an
impact-driven product that delivers value to customers in line with defined business
outcomes . Lean uses constantly validated learnings to reduce the risk of building
the wrong product while still being able to comfortably change direction . It includes
a variety of practices that, for example, define a minimum viable product (MVP),
conduct lean experiments, identify and test assumptions, and make
data-driven decisions .

Building working software
at a consistent speed and
quality in the face of
changing requirements.

Extreme
Programming

Ensuring we solve a real problem for real
users in a desirable and usable product.

User Centered Design

Reducing the risk of
building the wrong
thing while comfortably
chaning direction

Design
Does it solve a real

user problem?

LeanProduct
Management

Will this help
the business?

Engineering
How difficult is it

to build?

Product
Success

https://tanzu.vmware.com/design
https://tanzu.vmware.com/product-management

30

The Legacy Trap

Together, these three methods get us closer to software excellence and success . To
achieve this success, technology, code, tools, and frameworks only play a secondary
role . The focus is on new things your customers care about and cherish, not being
complete . Great products are desirable to users, viable to the business, and feasible
for the engineers . Largely adopted to create new software products from scratch by
silicon valley startups and large software companies, we will see how you can apply
those methods to existing applications in the next chapter .

The new team
Typically, you recraft your teams to be cross-functional across development, design,
and product management—balanced teams, as we call them . These teams take on a
great deal of ownership and are given autonomy to make fast, very well-informed
decisions and move quickly .

Growing collective knowledge with a cookbook
Many people also share practices by developing a cookbook customized to their
organization . Often done as a wiki or some other easily updated document, these
modernization cookbooks are collaboratively developed by engineers for their peers
and comprise a growing set of proven recipes . A recipe is a short article explaining
how to solve a specific problem or providing step-by-step instructions for completing
a task . Recipes can include code snippets, patterns, or best practices . They’re
instrumental in sharing knowledge so that people on new projects avoid solving the
same problem twice . Setup properly, we have seen cookbooks used prior to any
Google and StackOverflow search to find solution articles . While maintained actively,
such a knowledge base turns into the backbone of a modernization strategy at scale .

Internal platform
In parallel to the modernization efforts on the software engineering side, you should
build a new home for your applications . An application platform is not an off-the-
shelf piece of software; it’s an evolving set of reusable services integrated with your
existing systems that makes your developer more productive . Its capabilities should
change in response to the needs of its users—your app developers—among whom
it’s a recognizable internal brand . In other words, your platform should be treated as
a product and elaborated by a dedicated team .

Next up
Now that we covered the core principles to escape the modernization loop, let’s
put this all into practice in the context of rewriting existing monolithic systems
from scratch .

Jump-start monolithic modernization
Thus far, we’ve discussed many of the tools for putting together your modernization
strategy and plans . In this chapter, we’re going to discuss Swift, the methodology
we’ve been using for many years to help organizations modernize their oldest and
largest applications and developed by Shaun Anderson . Swift is a comprehensive but
quick approach to transforming monolithic applications into more modular, agile
applications . As the name implies, the primary driver of Swift is to get started quickly .

https://www.youtube.com/watch?v=_cu3psU9-Ac
https://tanzu.vmware.com/content/white-papers/why-you-should-treat-platform-as-a-product
https://tanzu.vmware.com/content/white-papers/why-you-should-treat-platform-as-a-product
https://www.linkedin.com/in/swiftbird/

31

The Legacy Trap

Consider the monolith
First, let’s define “monolith” in the context of software . This term is often pejorative13
and used to refer to existing systems that are business critical, take a long time to
update, are often expensive to run, and are technically complex . In other words,
changing the software is slow and difficult . And when your business depends on
software to run and compete, this means your business cannot easily change and
adapt . You’re stuck in the legacy trap .

Just one monolithic application is certainly difficult . But when you’re dealing with
multiple applications and services that are tightly coupled to each other, things get
much worse . These systems of systems too often have brittle and inflexible
architectures, are barely documented, and are sometimes a complete mystery to
your current staff . Monolithic applications have many characteristics, but like so many
large, troublesome things in life, you’ll probably be able to smell the monolith right
away . Let’s look at an example of just that .

Case study: Trapped in a mainframe
One large organization we worked with made three unsuccessful attempts to
decompose and modernize its mainframe application over the past decade . This
application is one of the core services for the organization and is used daily by more
than 3 million users and 35,000 administrative agents . Maintaining the monolithic
application costs more than eight figures in a year . It’s a 30-year-old mainframe
running on IBM z/OS, with tens of thousands of programs written in COBOL that also
used IBM DB2 and IMS databases .

Making changes to the application was costly . Releasing new or modified features
into production took anywhere from 3 to 18 months . In comparison, more than 60
percent of organizations in a recent Cloud Native Computing Foundation survey
release their software weekly, if not daily .

Like many other organizations, this one has been struggling to find a balance
between making changes to comply with recently enacted laws and modernizing the
technology used for its core systems . The organization also needed to bring the
technology into the modern era: flexible cloud native architecture, modern
programming language, simplified code, accelerated application development
lifecycles, and lower costs . Because of the lack of thorough documentation, and with
many of the organization’s COBOL developers either retired or soon to retire,
in-house domain and technical knowledge was sparse . This organization was stuck in
a legacy trap, and anyone could smell it from a kilometer away14 .

13 . Monolithic architectures can be a perfectly fine choice for the business and technical needs at hand . However, this
term is often used as the enemy in application modernization discussions, so we’ll do so here .

14 . Or, 0 .621371 miles, if you prefer .

https://www.infoq.com/articles/k8s-cncf-survey-chasm/?utm_source=cote&utm_medium=book&utm_content=legacytrap

32

The Legacy Trap

The Swift method
True impactful modernization is not simply rewriting an existing application by
leveraging new technologies . It’s about understanding the system and how it
holistically relates to the core business . In our experience, tackling large problems is
best done incrementally, in small batches, giving you the chance to learn and adapt
each time . One of the creators of extreme programming, Kent Beck, names this a
succession:

“[The] art of taking a single conceptual change, breaking it into safe steps, and then
finding an order for those steps that optimizes safety, feedback, and efficiency .”

The Swift method takes this approach . Let’s take a look at it .

The Swift modernization method was developed by Shaun Anderson within VMware
Tanzu Labs™ . It’s unrelated to the eponymous programming language, framework,
and payment network . The Swift method is a suite of practices building on each
other . Executed in 4 to 10 short cycles, Swift jump-starts the work of turning an idea
or a monolith application into a highly distributed, modern application . It helps
bridge the gap in understanding between the nontechnical, top-down way of
thinking and the technical, bottom-up thought process .

In the case of a legacy system, you decompose and rewrite your monolith from the
ground up by figuring out how it wants to behave . At the antipode of a big-bang
approach, Swift focuses you on a gradual transition . Old and new systems coexist
while the legacy system is progressively broken down and its parts rebuilt . Following
this incremental approach allows you to learn as you go and also gets you
started sooner .

1 . Swift is composed of six activities, done in the following order:

2 . Quantify targeted modernization outcomes (1–2 hours)

3 . Quickly understand the desired business functionality (1–2 days)

4 . Select meaningful implementation starting points (2 hours)

5 . Discover how the system wants to be designed (2–4 days)

6 . Derive a prioritized backlog of work (1–2 days)

7 . Craft iteratively tested working code (a few weeks)

Swift Method

Establish a Shared
Understanding

Business Case
Validated

Backlog
Prioritized

“Thin Slices” of System
Deployed to Production

Iteratively develop tested and working code

Iterations

G
oa

ls
Ev

en
t Sto

rm
ing

Thin Slice

N
otional A

rchitecture

SNAP

Patterns

Back
lo

g

https://twitter.com/KentBeck/status/58307196739518464

33

The Legacy Trap

As the times for each activity show, moving swiftly is built into the system .

Next, let’s look at each of these activities in detail .

Quantify desired modernization outcomes
Finding and quantifying concrete objectives for your modernization strategy is the
recommended first step of your modernization journey . What goals do you hope to
achieve, and how will you know if you did? These goals are going to become the
north star for your project or program . They’ll help align new architecture and efforts
with desired business outcomes .

To discover your goals and quantify the business outcomes, gather the stakeholders
together and do the following:

1 . Brainstorm concrete objectives for the upcoming weeks of modernization efforts .
Like most goal-driven metrics, objectives should be ambitious and qualitative .
Typical objectives could be to improve app modularity, automate app lifecycle,
learn modernization practices, or validate high-level design .

2 . Group similar objectives, forming clusters .

3 . Prioritize the objectives (for example, by dot-voting on the objective clusters) . Each
participant gets three dots, representing votes to spend on the objectives they
think are the most important . A prioritization between objectives will emerge .

4 . Brainstorm key results for each of the top selected objectives that would help to
validate if the related objective is fulfilled . Key results are quantitative and
measurable . For example, support 10 times more requests on the rewritten
login service .

After a very intense one- to two-hour meeting, you will end with a prioritized list of
agreed objectives reflecting the perspectives of all participants, supported by key
measures to track them . These goals can be represented formally as OKRs, or
whatever method you find most useful . The more important part is to find and agree
on goals, and put in some thinking about how you’d gain success for each goal .

Quickly understand the desired business functionality
The aim of exploring the business domain behind your application is to gain a
common understanding of what it does by building a simple, nontechnical,
comprehensive model . It will foster alignment and form a ubiquitous language for all
key stakeholders of the project: business analysts, software engineers, architects,
managers, and others . Getting an overall picture of what the application does is
essential to bring clarity to the desired target state .

Event storming is an incredibly efficient and fun method to capture and model the
business behind any application . It comes from the domain-driven design (DDD)
world . You can think of DDD as a collection of software development practices to
find the common ground between business think and software design .

 https://en.wikipedia.org/wiki/Dot-voting#

 34

The Legacy Trap

Invented by Alberto Brandolini in 2013, event storming is a workshop-based practice
to bring together software developers and domain experts, and learn from each
other . The exercise is extremely lightweight and intentionally requires only an
experienced facilitator, a large wall, a few pens, and a decent stock of stickies .
Although initially meant to be conducted in a physical room, it can also be
performed remotely .

During a simplified “big picture” variant of an event-storming workshop, all key
stakeholders of your monolithic application are invited to participate: architects,
business leads, software developers, management, operation specialists . . .
Collectively, they storm out a series of business events triggered within the future
modernized application . Orange sticky notes are used to represent business events .
In several iterations guided by a facilitator, the group will collaboratively let the
model emerge and sort events chronologically from the left to the right of the wall .

Then, events belonging to the same business domain are grouped together in a
business capability or business domain . This way, the participants will jointly identify
the distinct and independent business capabilities provided by your monolith .

While being intense, highly interactive, and a bit chaotic, the exercise yields an
extensive model of your modernized monolith—a wall covered by clustered stickies—
within only one to two days . It enables cross-perspective conversations while
projecting and consolidating head knowledge on one single wall .This workshop is
highly effective . We have seen highly complex applications modeled in two days that
months of documentation efforts failed to grasp .

Find and prioritize meaningful implementation starting points
Once you gain a crisp understanding of what your monolith is doing, you need to
figure out where to start . For example, we’ve supported a large financial software
vendor wrangling to find a path forward after multiple generic event-storming
exercises conducted on the same application . The team was struggling to validate its
meta model and select the first business narrative to reimplement .

Time

Starting point

Relevant Business Event
e.g. “Order placed”

Issue
Identified pain points

Identified Business Capability
e.g. “Order management”

https://www.linkedin.com/in/brando/

35

The Legacy Trap

This practice identifies the first business narrative (or workflow) to start modernizing
out of everything your monolithic application is doing . We call this business narrative
a thin slice of functionality as it reflects a small functional piece of the whole cake—
your monolith application .

First, it starts with a brainstorming exercise to identify the biggest issues and
challenges, or the biggest chances and opportunities within the event-stormed
application . Those are directly captured as stickies in a different color (usually red)
and stuck close to the business events they’re related to . Subsequently, the created
issues are reviewed, discussed and consolidated by the group .

Then, the biggest issues are prioritized through dot-voting . Looking back at the
previously captured goals before opening the vote sometimes helps . The events
related to the issues with the highest votes are great to include in the first thin slice .

Informed by those insights, one group of business events (orange stickies) covering a
clear business narrative is defined . A good rule of thumb is to pick a not too simple
but happy path with some of the identified issues, without touching everything . The
selected thin slice will form the first piece of your monolith to rewrite . The exercise
should not take more than two hours .

Discover how the system wants to be designed
So far, you have identified a clear business narrative as a starting point for your
modernization efforts . How do you turn this into code? Similar to a house renovation
project, an intermediary step in crafting the high-level building plans—also called
notional architecture—is as necessary as useful to have all stakeholders aligned .

At this point, it might be tempting to specify every bit of the use case in detail,
drafting the perfect high-level system design including its connected meta model
and architecture . Such a big design up front (or waterfall) approach is likely to take
months . This too often makes the big design outdated by the time the system is
completed . Perfect is the enemy of good .

Within just a few days, we want to consolidate the design skeleton of our application .
This process generates information about how the system wants to be designed
and attempts to avoid pitfalls such as premature solutioning . It achieves a quick
consensus on the desired high-level design, revealing APIs, services, data, and
event choreography .

A pragmatic approach to figuring out how the system wants to behave starts by
modeling the communication between the business capabilities identified during the
event-storming exercise . This is what the “Boris” exercise is all about . Each business
capability and each user interface are represented by one sticky note on a physical or
digital wall .

Led by a facilitator, the team goes through the selected thin slice narrative to model
the communication between the identified business-centric services and user
interface . Each communication is represented by a directed line between stickies .
It can occur synchronously, having the caller wait for an answer, or asynchronously
passing messages to a broker .

https://en.wikipedia.org/wiki/Big_Design_Up_Front

36

The Legacy Trap

At the end of the exercise, you obtain an annotated diagram that looks like a spider
web meticulously describing all communication flows covering your business
narrative . This step typically takes twice as long as the event-storming exercise .

Derive a prioritized backlog of work
For each identified service, we want to craft actionable user stories to start their
implementation . Generating this backlog of work will help move to the technical
design and implementation phase .

The snap technique quickly documents the outcomes of the Boris exercise in real
time . While conducting the Boris exercise, you use one page per service to
document all relevant aspects of the involved data pots, identified APIs, message
brokers (queues and topics), dedicated user stories, linked user interfaces, foreseen
risks, and connected external systems .

A few dedicated team members focus on capturing all those elements while the team
is moving through the selected business scenario .

UI

Service A

Service B

Service C

Service E

Service F

Service D
UI

Q

T
Q

Sychronous communication

Asychronous communication

Service Business capability service
e.g “Order Service”

Entry points
relevant in the narrative

Message Post Office
Async communication

User Interface

Queue Topic

UI

Service A

Service B

Service C

Service E

Service F

Service D
UI

Q

T
Q

Service A

API Data

Pub/Sub Ext

Stories UI Risks

One page
per service

Identified
APIs

Involved
data posts

External
systems

Risks
foreseen

Snap pages are filled
in real-time, in parallel
to the Boris exercise!

37

The Legacy Trap

Once the interactive Boris exercise is completed, all captured information is ready
to be translated into a backlog of work . This is typically orchestrated by a product
manager supported by an experienced software architect . Together, they formulate
the stories and add the required chores and spikes .

Chores are activities teams perform to do work or to work more easily . Spikes are
stories for which the team cannot estimate the effort needed . They can be seen
as time-boxed, exploratory research work to learn about the issue or the
possible solutions .

Iteratively craft tested and working code
From there onward, the development team follows a classical agile project
model . They iterate on the backlog, work in sprints, test and demonstrate their
achievements, and conduct a retrospective before they loop into the next
sprint planning .

The first stories the team works on are often architectural spikes exploring technical
design patterns, making technological decisions, and studying ways to bring
together the existing and new worlds . Initial chores include the full automation of the
path to production, paving the way for a reliable, zero-downtime deployment and
software promotion process .

A few iterations will be necessary to bring the first modernized service to production .
Many more will be required to completely replace the existing legacy system .

Back to our customer
Exactly by following those steps, the previously mentioned, mainframe-modernizing
organization found a way out of the legacy trap . Beyond successfully initiating the
rewrite of their mainframe, the team managed to bring the domain and technical
knowledge about their monolith back internally and seed a startup-like software
development culture . Leveraging pair programming between software engineers,
they progressively scaled by sharing and spreading those new practices among a
wider group of developers .

After nine weeks of work, the first rewritten service was deployed to production with
the ability to progressively transfer traffic between old and new worlds without the
end users noticing as the software was modernized . Last but not least, the whole
path to production has been automated to deploy code changes without any
downtime, within 30 minutes to production instead of four weeks in the past .

Common missteps with traditional approaches
Now that we know the right way to approach large-scale modernization, let’s take a
look at some of the missteps organizations often make when modernizing monolithic
applications . By going through each anti-pattern and explaining what they’re about
and why they’re not effective, you can avoid falling into the legacy trap .

 38

The Legacy Trap

The following diagram depicts the traditional modernization approaches for
monolithic applications we will cover and compares them to Swift . It sets side by side
each approach in terms of typical time to realize value in production, transformation
cost and efforts, resulting business impact and how modern the target application
ranging from “legacy” to “cloud native .”

Rehost to emulated hardware/middleware

What?
Software is rehosted from an expensive hardware or middleware layer to commodity
hardware, emulated infrastructure, or lower-cost, cloud-compatible technologies .

Why not?
The trap with this approach is to focus too much and too narrowly on only a few
costs . Despite much analysis, we’ve seen many rehosting strategies fail to take into
account the cost of everything that’s involved in the change, not to mention second
order effects . For example, the new middleware and infrastructure you use might be
much cheaper, but the amount of time and money it takes to retrain your staff could
erase savings . This is a common perception of open source software which, though
free, is often not polished enough for the amount of time and money enterprises
want to spend on the software . Another trap is ignoring the costs of validating that
you have the same functionality with an improved nonfunctional context . That is,
making sure everything still works, including the enterprise’s services and apps
that you have not modernized or have control over . Expect these deeper pains to
resurface in the middle term: lack of in-house domain knowledge and skills for
older programming languages (COBOL, RPG, PL, PowerBuilder, etc .) and legacy
middleware in use (older Java application servers), limiting architecture, inflexible
time-consuming processes .

There are more favorable reasons to rehost, sometimes also driven by the need to
gain more security and performance capabilities than your current data centers
provide . These cases are usually not primarily focused on lower costs but on pure
need . Running MS-DOS or Windows 95 in the cloud won’t change its architecture to
make it more scalable, modular or secure .

Business
Impact

High
(Cloud Native)

Low
(Legacy)

Time to value

1 month > 3 years1-2 years3 months 6 months

Legend

Rehost to emulated hardware/middleware

Re-interface Automated refactoring

Automated code translation

Repurchase

Iterative Swift rewrite

Waterfall rewrite

$
$$
$$$
$$$$$
$$$$$$

Modernization
cost/efforts

39

The Legacy Trap

Automated code translation

What?
Tools are used to automatically convert application code to a more modern
programming language, such as Java, C#, JavaScript, Go, or Rust .

Why not?
Each generation of programming languages introduces new concepts, methods of
design, and the associated tooling needed to write and support that code . For
example, the move from procedural code to object-oriented code changed
everything . Each generation of programming languages thinks differently than the
others . The benefits of new languages (recently, for example, the ability to handle
web-scale amounts of data and transactions) are often lost when code is auto-
generated . In addition to that, the generated code ends up difficult to read,
maintain, and extend, and loses touch with its existing code version history and
documentation . The impact of any translation error could end up being massive
with programs having millions of lines of code . Last but not least, such a translation
won’t provide a more adapted application architecture fitting your needs for scale,
reliability, modularity, and the like . As an analogy, imagine you were translating a
manual for horse-drawn carriages from French to English, but your new business
need was to manage driverless 18 wheelers . The words could be translated, perhaps
even poetically, but they would be useless for your new needs . As with rehosting,
you’ll also encounter unplanned costs and time when it comes to testing
and validation .

Automated refactoring

What?
Widely known refactoring activities are automated to clean up and restructure code
to follow best practices . Update libraries, or put new types of software design in
place . This automated refactoring is analogous to text entry fields on most of today’s
devices that auto-correct misspellings and suggest grammar fixes .

Why not?
Code is complex—there are many ways to write even the simplest of operations .
There are enough common patterns to automate rewriting of large pieces of code .
However, automated code refactoring must be verified, and it’s the ability to verify
changes to legacy code with tests that’s often the problem . Furthermore, automated
code refactoring will not change or update the business logic in your applications;
that is what the code does15 . The promise of a tool automating code creation and
refactoring toward microservices and clean code is fulfilled only on a very narrow set
of use cases today . Tools from Snyk, GitHub Copilot, vFunction, Spring, and
many others look promising, especially as they bring determinism to the
conducted changes .

15 . A purist would argue that, by definition, refactoring should not change the outcomes of code . Instead, refactoring
is intended to improve how the code functions, not what the code does .

https://github.com/spring-projects-experimental/spring-boot-migrator

40

The Legacy Trap

Code refactoring will only take you so far . It can be useful, but it’s only part of
escaping the legacy trap . When it comes to understanding the business domain of
your application, in order to architect an appropriate high-level design aligned
against desired business outcomes, tools alone won’t help much . They remain tools
and will neither upgrade team culture and nor ways of working .

Re-interface

What?
Create a new app exposing functionality of your legacy system and put it in front of it .
This is commonly known as a facade pattern and is a tactic to mask complexity and
foster the reuse of existing functionality .

Why not?
While combined with a strangler pattern, facades provide good support to a longer
modernization projects breaking down your monolith bit by bit . However, this
approach is not the endgame . This pattern does not really touches or modernize
your monolith . It just hides the technical misery and tightens system coupling .

Such a facade increases the performance pressure on the existing system by
exposing it to new clients, without improving its core design . Worse, it adds more
dependencies to your already tightly coupled monolith . We’ve seen many similar
projects that first introduce a small facade, before evolving into an API gateway and
then into a fully fledged dedicated API management platform with advanced access
management and observability capabilities . If neglected, this new layer can just turn
into something new to worry about, increasing the complexity of the initial
distributed monolith’s universe .

Repurchase

What?
An equivalent COTS software is bought to replace your legacy app .

Why not?
This sounds as straightforward as signing a big check and pressing a metaphoric
migrate button . For very standard use cases that have migration scenarios fully
covered by the target vendor, it might be the case .

However, for bespoke software covering more complex business logic, it’s likely to
come up short and end in a longer-than-expected waterfall project . These are the
most common reasons the button push doesn’t work:

• Your customizations aren’t easily translatable or simply aren’t possible with the new
system . In the worst case, this requires as much code writing as in a full rewrite
from scratch .

• Some data must be manually transformed instead of transformed with standard
automation . Data conversion, export, import, transfer, and validation could drain a
lot of time and efforts .

• Functionality mismatches between the old and new system require
manual intervention .

https://martinfowler.com/bliki/StranglerFigApplication.html

41

The Legacy Trap

Often, introducing an off-the-shelf application will also change the workflows in the
app, meaning people will need to relearn the new system . While learning the new
app, productivity may fall and people may often miss old features that no longer exist
in the app .

Waterfall rewrite

What?
A waterfall rewrite project structures the replacement of an existing monolith
following the V-model for software development . The V-model comprises a multi-
month design phase covering requirement analysis, system design, architectural
design, and module design, as well as matching to an ideal metadata model .
Developers then write the new application code . Each stage is followed by a
thorough validation check .

Why not?
Projects following this approach often get stuck in what armchair psychologists call
analysis paralysis . Having too much data can hinder the accuracy of decisions or the
speed with which they’re made . The sheer volume of available information on the
existing application—decades of documentation, code base, technology clutter,
competitive market collateral, company strategy, differentiating ideas and
aspirations—makes it difficult to get a clear picture and define an optimal
target state .

This modernization endeavor is so massive that its design phase feels like the never-
ending task of painting the Forth Bridge in Scotland . In that instance, once
completed, the fundamental premises of the design study changed so much that it
could be restarted from scratch .

In a nutshell, although a rewriting approach is the best way to radically improve your
applications, it cannot be conducted in a waterfall manner . As stated by Albert
Einstein, it leads us to realize that “we cannot solve our problems with the same
thinking we used when we created them .” In software, if you’re writing a new
application from scratch, it’s a good idea to take advantage of the lean product
management approach to development while proceeding in short iterations . This
practice focuses on verifying your assumptions with each release rather than
assuming they’re all correct from the beginning . For more discussion on that
approach, see Monolithic Transformation .

It always depends
We’ve pointed out the flaws, but there are techniques in each of these approaches
that are helpful . However, they’re generally helpful when used together with other
techniques rather than in isolation .

https://en.wikipedia.org/wiki/V-Model_(software_development)
https://tanzu.vmware.com/content/ebooks/monolithic-transformation?utm_source=cote&utm_medium=book&utm_content=legacytrap

42

The Legacy Trap

Building a modernization habit
Now we’ll tell you a discouraging truth: You will never finish modernizing your
application portfolio . A modernized app today is just a legacy app tomorrow .
(Well, 5 or 10 years from now .) To escape the legacy trap, application modernization
must become an ongoing habit . The sheer amount of applications most large
organizations have—in the thousands—means you could spend years modernizing
your portfolio . Hopefully, you can rehost, replace, or retire many of those, saving
much time and money . However, your software estate needs constant maintenance
just as a city needs constant maintenance to remain livable .

If you’ve fallen into the legacy trap, it means you haven’t built up the application
modernization habit . It hasn’t been enshrined in your IT culture . After learning how
modernization works in your organization, hopefully with proven methods to
prioritize and align modernization efforts and modernize monolith apps (Swift),
start thinking about how you can install it as a permanent part of your organization’s
process and culture .

We work with too many organizations held back by the legacy trap . And worse,
we have to use applications from many of those organizations, as you likely do .
Modernizing your application portfolio will certainly make your organization run
better, but it will also likely improve people’s day-to-day lives .

Just remember to guide your strategy by business need, start small, follow a
disciplined process, and learn each cycle . There are many tools to help modernize
your applications, but the real secret is to actually make sure you and your
organization are doing the work week to week .

Good luck!

https://www.linkedin.com/pulse/how-marie-kondo-your-application-portfolio-marc-zottner/

43

The Legacy Trap

About the Authors
Michael Coté studies how large organizations get better at building software to
run better and grow their business . His books Changing Mindsets, Monolithic
Transformation, and The Business Bottleneck cover this topic . He’s been an industry
analyst at RedMonk and 451 Research, done corporate strategy and M&A, and was a
programmer . He also co-hosts several podcasts, including Software Defined Talk . Cf .
cote .io, and is @cote in Twitter .

Marc Zottner spends most of his time supporting large companies to modernize
their strategic applications . At VMware Tanzu Labs, he is the global application
modernization lead . Former transformation program lead, consulting architect,
middleware specialist, and trainer, Marc has extensive experience in the application
ecosystem and often feels like an archeologist .

This book was compiled in October 2022 by VMware .

Thanks for reading!

https://www.linkedin.com/in/michaelcote/
https://cote.io/books/
https://tanzu.vmware.com/content/ebooks/changing-mindsets-the-missing-ingredient-to-digital-transformation?utm_source=cote&utm_content=bioblock
https://pivotal.io/monolithictransformation
https://pivotal.io/monolithictransformation
https://content.pivotal.io/ebooks/the-business-bottleneck?utm_source=cote&utm_medium=speakingbio
https://www.softwaredefinedtalk.com/
https://cote.io/
https://twitter.com/cote
https://www.linkedin.com/pulse/legacy-infrastructure-saqqara-necropolis-world-marc-zottner/

Copyright © 2022 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies. VMware products are covered by one or more patents listed at vmware.com/go/patents.
Item No: The Legacy Trap 10/22

